



과학기술연합대학원대학

Doan Trang Nguyen<sup>1</sup>, Kang Woong<sup>2</sup>, Saeng Hee Lee<sup>2</sup>, Yong Moon Choi<sup>2</sup> <sup>1</sup>University of Science and Technology <sup>2</sup>Korea Research Institute of Standards and Science





#### Greenhouse Gas Emission

과학기술연합대학원대학교



## Methodology for estimating GHG emission



Fuel consumption (Tier 1) by IPCC guidelines, EPA

 $E = FC \times EF = FM \times NCV \times EF$ 

E : estimated emission (kg) FC : fuel consumption (TJ) EF : emission factor (kg/TJ) FM : fuel mass (kg) NCV : net calorific value(TJ/kg)



Carbon content (Tier 3) by IPCC guidelines, EPA

 $E = FM \times CC \times \frac{M_{CO_2}}{M_C}$ 

CC: fuel carbon content(kg/kg)  $M_{CO2}$ : molecular mass of carbon dioxide  $M_C$ : atomic mass of carbon

### Methodology for estimating GHG emission

Continuous emission measurement (Tier 4)

by IPCC guidelines, EPA

$$E = \sum_{i=1}^{N} E_{5min,i} = \sum_{i=1}^{N} (x_{5min,i} \times \frac{Q_{5min,i}}{MV})$$

 $E_{5min,i}$ : 5-min accumulated emission of *i*th measurement (kg)  $x_{5min,i}$ : 5-min averaged concentration of the ith measurement(% or ppm)  $Q_{5min,i}$ : 5-min accumulated volumetric flow of the *i*th measurement (m<sup>3</sup>)  $M_{gas}$ : molar mass of an emission gas, *MV* is the molar volume of ideal gas *N*: total number of 5-min estimated emissions.





과학기술연합대학원대학교



#### Methods

**U.S. EPA Method 2: Determination of Stack Gas Velocity and Volumetric Flow Rate** 

**U.S. EPA Method 4: Determination of Moisture Content in Stack Gases** 

Korea Ministry of Environment ES. 01809.1: Test Method on air pollution

#### • Equation for The 5-min accumulated volumetric flow rate

$$Q_{5min} = \overline{V} \times \frac{\pi D^2}{4} \times \frac{P_s}{760} \times \frac{273.15}{T_s} \times (1 - x_w) \times t$$

 $Q_{5min}$ : dry volumetric flowrate at stack (m<sup>3</sup>/min)  $\overline{V}$ : average velocity (m/min)

D : diameter of the stack

- $T_s$ : average temperature of the stack gas (K)
- $P_s$ : average absolute pressure of the stack gas (mmHg)
- $X_w$ : water content of the stack gas (%)

Estimating Uncertainties of Stack Gas Flow rate measurement for CEM by GUM and MCM

**On-site** measurement with S-type Pitot



Instruments for measuring velocity in stacks in Korea









## **On-site** measurement with S-type Pitot





KRISS

#### Characteristics of S-type Pitot

Structure follows: ISO 10780, KS M9429, EPA Title40: Part 60, Appendix A method2

- Large pressure orifices( $\Phi$ =5~10mm) & Strong tubes for high dust environments

- Measurement differential pressure between an impact and wake orifice based on Bernoulli equation

$$V_s = C_P \times \sqrt{\frac{2\Delta P}{\rho}}$$

 $V_s$ : flow velocity in the stack gas(m/s)

 $C_P$ : S type Pitot tube coefficient

 $\Delta P$ : differential pressure between impact and wake orifice (*Pa*)  $\rho$ : density of the stack gas (*kg/m<sup>3</sup>*)

# **KRISS** On-site measurement with S-type Pitot



Sampling traverse points in the stack for velocity distribution by ISO 10780 / EPA method 1





| Stack Diameter | raidue | numbore | Distance from center of stack |                |                |            |            |  |  |  |
|----------------|--------|---------|-------------------------------|----------------|----------------|------------|------------|--|--|--|
| 2R (m)         | Taluus | numbers | r <sub>1</sub>                | r <sub>2</sub> | r <sub>3</sub> | <b>r</b> 4 | <b>r</b> 5 |  |  |  |
| < 1            | 1      | 4       | 0.707 R                       | -              | -              | -          | -          |  |  |  |
| 1~2            | 2      | 8       | 0.500 R                       | 0.866 R        | -              | -          | -          |  |  |  |
| 2 ~ 4          | 3      | 12      | 0.408 R                       | 0.707 R        | 0.913 R        | -          | -          |  |  |  |
| 4 ~ 4.5        | 4      | 16      | 0.354 R                       | 0.612 R        | 0.791 R        | 0.935 R    | -          |  |  |  |
| > 4.5          | 5      | 20      | 0.316 R                       | 0.548 R        | 0.707 R        | 0.837 R    | 0.949 R    |  |  |  |

# **KRISS** On-site measurement with S-type Pitot

Orombined heat and power plan at Gunjang Energy Co., Ltd









### **On-site** measurement with S-type Pitot



Analyzer Control Unit

#### 😌 On-site Measurement









### Uncertainty evaluation



Modelling for dry volumetric in the stack

$$Q_{5min} = C_P \times \sqrt{\frac{2\Delta P}{\rho}} \times \frac{\pi D^2}{4} \times \frac{P_s}{760} \times \frac{273.15}{T} \times (1 - x_w) \times 300$$

#### GUM method

- **ISO/IEC** Guide 98-3: Guide to the Expression of Uncertainty in Measurement
- **C** Law of Propagation of Uncertainty through Taylor series approximation

$$u_{c}^{2}(Q) = c_{C_{p}}^{2}u^{2}(C_{p}) + c_{\Delta P}^{2}u^{2}(\Delta P) + c_{\rho}^{2}u^{2}(\rho) + c_{D}^{2}u^{2}(D) + c_{T_{s}}^{2}u^{2}(T_{s}) + c_{P_{s}}^{2}u^{2}(P_{s}) + c_{(1-X_{w})}^{2}u^{2}(1-X_{w})$$



Sensitivity coefficient

$$C_{C_{p}} = \frac{\partial Q}{\partial C_{p}} = \times \sqrt{\frac{2\Delta P}{\rho}} \times \frac{\pi}{4} D^{2} \times \frac{P_{s}}{P_{std}} \times \frac{T_{std}}{T_{s}} \times (1 - X_{w})$$

$$C_{\Delta P} = \frac{\partial Q}{\partial dP} = \frac{1}{2} C_{P} \times \sqrt{\frac{2}{\rho\Delta P}} \times \frac{\pi}{4} D^{2} \times \frac{P_{s}}{P_{std}} \times \frac{T_{std}}{T_{s}} \times (1 - X_{w})$$

$$C_{\rho} = \frac{\partial Q}{\partial \rho} = \frac{1}{2} C_{P} \times \sqrt{\frac{2\Delta P}{\rho^{3}}} \times \frac{\pi}{4} D^{2} \times \frac{P_{s}}{P_{std}} \times \frac{T_{std}}{T_{s}} \times (1 - X_{w})$$

$$C_{D} = \frac{\partial Q}{\partial D} = C_{P} \times \sqrt{\frac{2\Delta P}{\rho}} \times \frac{\pi}{2} D \times \frac{P_{s}}{P_{std}} \times \frac{T_{std}}{T_{s}} \times (1 - X_{w})$$

$$C_{P_{s}} = \frac{\partial Q}{\partial P_{s}} = C_{P} \times \sqrt{\frac{2\Delta P}{\rho}} \times \frac{\pi}{4} D^{2} \times \frac{1}{P_{std}} \times \frac{T_{std}}{T_{s}} \times (1 - X_{w})$$

$$C_{T_{s}} = \frac{\partial Q}{\partial T_{s}} = -C_{P} \times \sqrt{\frac{2\Delta P}{\rho}} \times \frac{\pi}{4} D^{2} \times \frac{P}{P_{std}} \times \frac{T_{std}}{T_{s}^{2}} \times (1 - X_{w})$$

$$C_{(1 - X_{w})} = \frac{\partial Q}{\partial (1 - X_{w})} = -C_{P} \times \sqrt{\frac{2\Delta P}{\rho}} \times \frac{\pi}{4} D^{2} \times \frac{P}{P_{std}} \times \frac{T_{std}}{T_{s}^{2}} \times (1 - X_{w})$$

Relative uncertainty

$$\frac{u_c^2(Q)}{Q} = \frac{u^2(C_p)}{C_p^2} + \frac{1}{4} \frac{u^2(\Delta P)}{\Delta P^2} + \frac{1}{4} \frac{u^2(\rho)}{\rho^2} + 4 \frac{u^2(D)}{D^2} + \frac{u^2(P_s)}{P_s^2} + \frac{u^2(T_s)}{T_s^2} + \frac{u^2(1-X_w)}{(1-X_w)^2}$$

### Uncertainty evaluation by GUM



S-type Pitot Coefficient  $(C_p)$ 

 $\frac{u^2(C_p)}{C_P^2}$ 

- **S-type Pitot tube coefficient and uncertainty are determined by calibration certification**
- **S-type Pitot tube was calibrated in the wind tunnel of the accredited calibration laboratories** 
  - Korea Environment Corporation (U = 1.1 %, k = 2 with 95% confidence level)



| Uncertainty<br>Component | Uncertainty<br>Component Value |       | Probability distribution | Sensitivity<br>Coefficient<br>c <sub>i</sub> | Uncertainty<br>Contribution to u(Q)<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|--------------------------------|-------|--------------------------|----------------------------------------------|----------------------------------------------------------------------------|
| Туре А                   | 0.826                          | N/A   | -                        | 1                                            | -                                                                          |
| Туре В                   | 0.820                          | 0.55% | Normal                   | 1                                            | 0.55 %                                                                     |



## Uncertainty evaluation by GUM







- **O** Type A collective data every 3 seconds for 5 minutes
- Type B annual variation of linearity results in the performance test between 2009 & 2010



| Uncertainty<br>Component | Value    | Standard<br>uncertainty<br>u <sub>i</sub> (%) | Probability<br>distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|----------|-----------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре А                   | 126 4 Do | 0.54%                                         | Normal                      | 1/2                        | 0.27 %                                                             |
| Туре В                   | 130.4 Pd | 1.78 %                                        | Rectangular                 | 1/2                        | 0.89 %                                                             |





**Weighted average based on concentration of major gas components (N<sub>2</sub>, CO<sub>2</sub>, O<sub>2</sub>, Ar, Water)** 

$$\rho_{0} = \frac{(\%CO_{2} \times 44 + \%O_{2} \times 32 + \%Ar \times 39.94 + \%N_{2} \times 28 + \%X_{w} \times 18) \times 100}{22.4}$$

$$\rho_{std} = \rho_{0} \times \frac{T_{std}}{T_{s}} \times \frac{P_{s}}{P_{std}}$$

**O** Type A - collective data every 10 seconds for 5 minutes

**O** Type B - difference between calculating gas density value and used theoretical value (1.3 kg/m<sup>3</sup>)

by test method in environment ministry

KRISC

| Uncertainty<br>Component | Value                  | Standard<br>uncertainty<br>u <sub>i</sub> (%) | Probability<br>distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|------------------------|-----------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре А                   | 1.22 km/m <sup>3</sup> | 0.0054 %                                      | Normal                      | 1/2                        | <b>0.0027</b> %                                                    |
| Туре В                   | 1.55 кg/m <sup>3</sup> | 1.12 %                                        | Rectangular                 | 1/2                        | <b>0.61</b> %                                                      |



- **O** The manufacture's technical specification with the value 2500 mm
- **O** The resolution of tape measure tool ± 10 mm



| Uncertainty<br>Component | Value   | Standard<br>uncertainty<br>u <sub>i</sub> (%) | Probability<br>distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|---------|-----------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре А                   | 2500 mm | N/A                                           | -                           | 2                          | -                                                                  |
| Туре В                   | 2500 mm | 0.23 %                                        | Rectangular                 | 2                          | <b>0.46</b> %                                                      |



## Uncertainty evaluation by GUM

 $\frac{u^2(P_s)}{P_s}$ 



- Type A collective data every 3 seconds for 5 minutes
- **O** Type B below 1 mmHg from calibration certificates



과학기술연합대학원대학교

Type A - collective data every 3 seconds for 5 minutes
Type B - below 1 K from calibration certificates



| Uncertainty<br>Component | Value | Standard<br>uncertainty<br>u <sub>i</sub> (%) | Probability<br>distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|-------|-----------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре А                   | 756   | 0.0019 %                                      | Normal                      | 1                          | 0.0019 %                                                           |
| Туре В                   | mmHg  | 0.13 %                                        | Rectangular                 | 1                          | 0.15 %                                                             |

| Uncertainty<br>Component | Value | Standard<br>uncertainty<br>u <sub>i</sub> (%) | Probability<br>distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|-------|-----------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре А                   | 400 K | 0.0048 %                                      | Normal                      | 1                          | 0.0048 %                                                           |
| Туре В                   | 409 K | 0.14 %                                        | Rectangular                 | 1                          | 0.14 %                                                             |



 $\frac{u^{2}(1-X_{w})}{(1-X_{w})}$ 

- **EPA method 4 (Determination of moisture content in stack), Test method in Korea Environ.**
- **Water content is calculated by condensed moisture in the impinger and volume flow rate in the dry gas meter**

$$X_{w} = \frac{\frac{m_{a}}{18} + (\frac{P_{w}}{P_{std}} \times V_{m} \times \frac{T_{std}}{T_{m}} \times \frac{P_{m}}{P_{std}}) \times \frac{1}{22.4}}{\frac{V_{m} \times \frac{T_{std}}{T_{m}} \times \frac{P_{m}}{P_{std}}}{22.4} + \frac{m_{a}}{18}}$$



과학기술연합대학원대학교



- **Type A** continuous moisture mass measurement method (0.292 g/min ) in every 10 seconds
- **O** Type B difference between measured water content value and used theoretical value (8.1%)
  - estimated by numerical derivative method (GUM) in water content equation

| Uncertainty<br>Component | Value  | Standard<br>uncertainty<br>u <sub>i</sub> (%) | Probability<br>distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution<br>u <sub>i</sub> x c <sub>i</sub> (%) |
|--------------------------|--------|-----------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре А                   | 01 50/ | 0.0016 %                                      | Normal                      | 1                          | 0.0016 %                                                           |
| Туре В                   | 91. 5% | 0.30 %                                        | Rectangular                 | 1                          | 0.30 %                                                             |



Uncertainty evaluation by GUM



#### Velocity distribution ( $\Delta V$ )

#### $u(\varDelta V)$

- **O** Velocities at 10 sampling traverse points were measured according to EPA method 1& Test method
- S-type Pitot tube in the stack is typically fixed in a certain position
- Type B Deviation of averaged velocity by velocity distribution with velocity at fixed position in the cross section of stack





#### Uncertainty Budget

| Symbol            | Value   | unit              | Uncer<br>comp  | tainty<br>onent | Sensitivity                 | Combined<br>uncertainty |
|-------------------|---------|-------------------|----------------|-----------------|-----------------------------|-------------------------|
| ,                 |         |                   | Type A %       | Type B %        | coefficient                 | contribution            |
| $\mathcal{C}_{p}$ | 0.826   | -                 | -              | 0.55            | 1                           | 0.55 %                  |
| $\Delta P$        | 136.4   | Ра                | 0.54           | 1.78            | 0.5                         | 0.93 %                  |
| ρ                 | 1.33    | kg/m <sup>3</sup> | 0.0054         | 1.12            | 0.5                         | 0.56 %                  |
| D                 | 2500    | mm                | -              | 0.23            | 2                           | 0.46 %                  |
| P <sub>s</sub>    | 756     | mmHg              | 0.0019         | 0.15            | 1                           | 0.15 %                  |
| T <sub>s</sub>    | 409     | к                 | 0.0048         | 0.16            | 1                           | 0.16 %                  |
| 1-X <sub>w</sub>  | 91.5    | %                 | 0.0016         | 0.30            | 1                           | 0.30 %                  |
| $\Delta V_D$      | 14.8    | m/s               | 1.54           | -               | 1                           | 1.54 %                  |
| Q                 | 12972.5 | m³/mi             | n (5min)       |                 |                             |                         |
|                   |         | Combi             | ined uncertain | ty of the flow  | rate measurement            | 2.05 %                  |
|                   |         |                   |                | 95 % co         | onfidence level, <i>k</i> = | 2                       |
|                   |         |                   |                | Expanded        | I Uncertainty, $U =$        | 4.1 %                   |

### Uncertainty evaluation by MCM

과학기술연합대학원대학교

Sources of measurement uncertainty contributions



### Uncertainty evaluation by MCM



Sources of measurement uncertainty contributions

Propagation of a joint probability distribution
 Outcome is a set of trials from the probability distribution associated with the measurand

$$X_{1}^{(m)} \sim g_{X_{1}}$$

$$X_{2}^{(m)} \sim g_{X_{2}}$$

$$\vdots$$

$$X_{N}^{(m)} \sim g_{X_{N}}$$

$$Y = f(X_{1}, X_{2}, \dots, X_{N})$$

$$\downarrow$$

$$\{Y^{(m)} | m = 1 \dots M\} \approx g_{Y}$$

| Parameter input                                | Magnitude         | Unit  | Distribution   |
|------------------------------------------------|-------------------|-------|----------------|
| Concentration of $CO_2$ , $\%CO_2$             | $X_1 = 15.24$     | %     | t-distribution |
| Gas analyzer for CO <sub>2</sub>               | $X_2 = 0$         | %     | Gauss          |
| <b>Concentration of O<sub>2</sub>,</b> $\%O_2$ | $X_3 = 4.028$     | %     | t-distribution |
| Gas analyzer for O <sub>2</sub>                | $X_4 = 0$         | %     | Gauss          |
| Dry gas volume, $Q_m$                          | $X_5 = 4.61$      | L/min | t-distribution |
| Dry gas meter                                  | $X_6 = 0$         | L/min | Gauss          |
| Mass of moisture, $m_0$                        | $X_7 = 16.456$    | g     | Rectangular    |
| Mass of moisture, $m_{5min}$                   | $X_8 = 17.981$    | g     | Rectangular    |
| Sampling time, $t_0$                           | $X_9 = 0.1$       | min   | Rectangular    |
| Sampling time, $t_{5min}$                      | $X_{10} = 0$      | min   | Rectangular    |
| Pressure in stack, P <sub>s</sub>              | $X_{11} = 756$    | mmHg  | t-distribution |
| Pressure gauge                                 | $X_{12} = 0$      | mmHg  | Rectangular    |
| Temperature in stack, $T_s$                    | $X_{13} = 409$    | K     | t-distribution |
| Temperature device                             | $X_{14} = 0$      | K     | Rectangular    |
| Deviation of density, $\Delta  ho$             | $X_{15} = 0$      | kg/m³ | Rectangular    |
| <b>Different pressure,</b> $\Delta P$          | $X_{16} = 136.4$  | Ра    | Gauss          |
| Different pressure gauge                       | $X_{17} = 0$      | Ра    | Gauss          |
| Temperature at meter, $T_m$                    | $X_{18} = 297.75$ | K     | Rectangular    |
| Pressure at meter, $P_m$                       | $X_{19} = 771$    | mmHg  | Rectangular    |
| Water vapor pressure, $P_w$                    | $X_{20} = 5.69$   | mmHg  | Rectangular    |
| Calibration of S-type Pitot, $C_P$             | $X_{21} = 0.826$  |       | Gauss          |
| Diameter of stack, D                           | $X_{22} = 2.5$    | m     | Rectangular    |
| Velocity distribution, $\Delta V$              | $X_{23} = 0$      | m/s   | Rectangular    |
| <b>Deviation of moisture,</b> $\Delta X_w$     | $X_{24} = 0$      | %     | Rectangular    |



## Uncertainty evaluation by MCM



Number of Monte Carlo runs

- **The Monte Carlo simulation process carried by number of Monte Carlo trials (M)**
- **M number decides shape of probability density function for the dry flow rate**
- **()** In this study the number of model evaluations simulated respectively  $M = 10^5$ ,  $10^6$ , and  $10^7$



#### Monte Carlo simulation



#### **Framework of this simulation was based on the Microsoft Excel and Microsoft Visual Basic for**

|    | Mathematical model | <b>FXN</b> = 3 | 00 * ( X(2 | 21) * SQR(2 *         | (X(15) | ) + X(16) + X | (17)) / ((((44 | * (X(1) | + X(2)) + | 32 * (X( | 3) + X(4)) ·                        | + <mark>39.94 * 0.9</mark> 3 | 3 + 18 * (Xw + X(24)) + 2 | 28 * (99.06 - (X(1) + X(2)) - (X(3 | ) + X(4)) - (Xw + |
|----|--------------------|----------------|------------|-----------------------|--------|---------------|----------------|---------|-----------|----------|-------------------------------------|------------------------------|---------------------------|------------------------------------|-------------------|
|    | Number of quanlity | 24             |            |                       |        |               |                |         |           |          |                                     |                              |                           |                                    |                   |
|    | Bins               | <b>120</b>     |            |                       |        |               |                | Mant    | . Carla   |          |                                     |                              | Confidence level          | <mark>95</mark> %                  |                   |
|    | Decimal places     | 5              |            |                       |        |               |                | Mont    | e Carlo   |          |                                     |                              | Trials                    | 3,000,000                          |                   |
|    | Status             | Finish at      | fter 62.54 | seconds at <u>o</u> . | 후 9:58 | 3:07 in 2019- |                |         |           |          |                                     |                              | 🔽 Draw histogram af       | ter sampling                       |                   |
|    |                    |                |            |                       |        |               |                |         |           |          |                                     |                              | Create image of           | f drawing of histogram             |                   |
| N⁰ | Quanlity           | Symbol         | Value      | Distribution          | Code   | Factor 1      | Factor 2       | Divisor | ui        | Gi       | (u <sub>i</sub> · c <sub>i</sub> )² | %                            |                           |                                    |                   |
| 01 | %CO <sub>2</sub>   | <b>x</b> 1     | 15.2407    | t-distribution        | 4      | 0.04497       | 27             | 1       | 0.00865   | -34.758  | 9.0E-02                             | 0.00 OK                      | GUM value                 | 12972.42814                        |                   |
| 02 | Gas analyzer       | X2             | 0          | Gaussian              | 0      | 0.0762037     |                | 1       | 0.0762    | -34.747  | 7.0E+00                             | 0.01 OK                      | GUM uncertainty           | <b>523.93879</b>                   | 81Z51             |
| 03 | %O <sub>2</sub>    | Xa             | 4.02778    | t-distribution        | 4      | 0.049562      | 27             | 1       | 0.00954   | -8.6895  | 6.9E-03                             | 0.00 OK                      | MC value                  | 12972.23267                        | ())               |

| 4.747       7.0E+00       0.01       01         .6895       6.9E-03       0.00       01         .6893       3.1E-02       0.00       01         5.977       3.2E-02       0.00       01         5.079       2.0E+01       0.03       01         5.944       1.1E-01       0.00       01         71.62       2.7E+00       0.00       01 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .6895       6.9E-03       0.00       OI         .6893       3.1E-02       0.00       OI         5.977       3.2E-02       0.00       OI         5.079       2.0E+01       0.03       OI         5.944       1.1E-01       0.00       OI         86.94       1.1E-01       0.00       OI         71.62       2.7E+00       0.00       OI |
| .6893       3.1E-02       0.00       OI         5.977       3.2E-02       0.00       OI         5.079       2.0E+01       0.03       OI         5.944       1.1E-01       0.00       OI         86.94       1.1E-01       0.00       OI         71.62       2.7E+00       0.00       OI         1.622       2.7E+00       0.00       OI |
| 5.977       3.2E-02       0.00       OI         5.079       2.0E+01       0.03       OI         6.944       1.1E-01       0.00       OI         86.94       1.1E-01       0.00       OI         71.62       2.7E+00       0.00       OI         1.622       2.7E+00       0.00       OI                                                 |
| 5.079       2.0E+01       0.03       0I         6.944       1.1E-01       0.00       0I         86.94       1.1E-01       0.00       0I         71.62       2.7E+00       0.00       0I         1.622       2.7E+00       0.00       0I                                                                                                 |
| 6.944       1.1E-01       0.00       OI         86.94       1.1E-01       0.00       OI         71.62       2.7E+00       0.00       OI         1.622       2.7E+00       0.00       OI                                                                                                                                                 |
| 86.94         1.1E-01         0.00         OH           71.62         2.7E+00         0.00         OH           1.622         2.7E+00         0.00         OH                                                                                                                                                                           |
| 71.62 2.7E+00 0.00 OF<br>1.622 2.7E+00 0.00 OF                                                                                                                                                                                                                                                                                          |
| 1.622 2.7E+00 0.00 Ok                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                         |
| 57577 4.0E-03 0.00 Of                                                                                                                                                                                                                                                                                                                   |
| 57294 2.4E+01 0.04 OF                                                                                                                                                                                                                                                                                                                   |
| 5.849 2.9E-03 0.00 Of                                                                                                                                                                                                                                                                                                                   |
| 15.82 8.3E+01 0.12 Of                                                                                                                                                                                                                                                                                                                   |
| -7178 4.7E+03 6.79 Of                                                                                                                                                                                                                                                                                                                   |
| .5843 6.7E+02 0.97 Of                                                                                                                                                                                                                                                                                                                   |
| .3643 1.5E+04 21.16 Of                                                                                                                                                                                                                                                                                                                  |
| 2.882 2.8E+00 0.00 OF                                                                                                                                                                                                                                                                                                                   |
| 1298 4.1E-01 0.00 Of                                                                                                                                                                                                                                                                                                                    |
| 4.563 7.1E+01 0.10 Of                                                                                                                                                                                                                                                                                                                   |
| 705.1 5.1E+03 7.42 Of                                                                                                                                                                                                                                                                                                                   |
| 377.9 3.6E+03 5.23 Of                                                                                                                                                                                                                                                                                                                   |
| 5.015 4.0E+04 58.12 Of                                                                                                                                                                                                                                                                                                                  |
| 0 0.0E+00 0.00 Of                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                         |

| MC value                   | 12972.23267 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0     |
|----------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| MC uncertainty             | 525.24319   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40875 |
| MC lower                   | -497.08643  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0     |
| MC upper                   | 499.59165   | $(\frac{d\theta}{d\theta}, (\frac{d\theta}{d\theta}, \frac{d\theta}{d\theta}, (\frac{d\theta}{d\theta}, \frac{d\theta}{d\theta}, \frac{d\theta}{$ | 40875 |
|                            |             | 100 - 100 - 100 - 100 - 100 - 100<br>100 - 100 - 100 - 100 - 100<br>100 - 100 - 100 - 100 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0     |
| Value of axis Y in percent |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 100000                     | Result      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 80000 -                    | auto        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 60000 -                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 40000 -                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 20000 -                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |

11921.746 12446.989 12972.233 13497.476 14022.719

n



## Conclusion



#### 1. Uncertainty Evaluation Result

- **By GUM method:** 
  - Q(every 5 minutes) =  $12972.7 \text{ m}^3$
  - U(Q) = 4.1 % with k = 2, P = 95 %

#### **By Monte Carlo method:**

Q(every 5 minutes) =  $12972.2 \text{ m}^3$ 

U(Q) = 4.0% (525.2 m<sup>3</sup>) with k = 2, P = 95 %

- Agreement between two methods
- Reliable to use the Monte Carlo method in a complicate mathematical model

2. The main components affect the dry flow rate measurement

>  $\Delta V, \Delta P, \Delta \rho, C_P$ : contribute dominantly to the uncertainty of the dry flow rate measurement



# Thank you for your kind attention!

